QIn regards to Glyphosate patent as an antibiotic. Has there been any research to test and see if glyphosateresistant bacteria in soil sprayed regularly with glyphosate, are also resistant to antibiotics used in humans. So, has it been shown that mechani

In regards to Glyphosate patent as an antibiotic. Has there been any research to test and see if glyphosateresistant bacteria in soil sprayed regularly with glyphosate, are also resistant to antibiotics used in humans. So, has it been shown that mechanism of action that causes a bacteria to be resistant to glyphosate also causes resistance in any other antibiotics?

AExpert Answer

Resistance to glyphosate does not result in resistance to other antibiotic agents.  Antibiotics used in medicine today operate by very specifically blocking one or more steps in microbial metabolism.  Glyphosate inhibits a specific biochemical pathway involved in the production of protein precursors (aromatic amino acids).  Susceptible microbes cannot grow without this pathway unless they have access to an alternative source of these amino acids.  Specifically, glyphosate inhibits an enzyme, EPSPS, (enol-phosphate-shikimate-3-phosphate-synthase). Resistance to glyphosate in microbes is due to the existence of variants of EPSPS which are not inhibited by glyphosate.  None of the antibiotics we use today act on the specific metabolic step (EPSPS) inhibited by glyphosate, so glyphosate resistance does not confer resistance to other antibiotics.

 

Multiple antibiotic resistance in bacteria is sometimes due to a collection of antibiotic resistance genes grouped together on an inheritable ring of DNA called a plasmid.  When multiple antibiotic resistance genes travel together, the use of one antibiotic can select for resistance to multiple antibiotics.  The gene affected by glyphosate is not carried on such a plasmid, so use of glyphosate does not select for multiple resistant organisms.

 

At one time, scientists were interested in the possibility of using  glyphosate as an antibiotic  for exactly this reason- it has a unique mechanism and thus might help manage bacteria resistant to other antibiotics.  Glyphosate is not well absorbed orally and is very rapidly excreted, levels needed to kill microbes are relatively high, and resistance can develop readily, so it has never proven to be a clinically useful antibiotic.   

Posted on January 31, 2018
Thank you for your question. There are various aspects of your question. I assume your question refers to the use of Agrobacterium rhizogenes by scientists to intentionally transfer genes from the bacterium to plants. Infection and DNA transfer from this bacterium occurs in nature all the time to cause disease. Such transformed plants are not classified as GMOs since transfer occurred naturally. If this is done by scientists then it would be classified as a GMO. Rules and... Read More
Answer:
Posted on March 1, 2018
I’m a Monsanto scientist who has more than 20 years of experience with genetic modification of plants. I will try to answer your question, even though I don’t ever do experiments on animals, certainly not on humans, of course! Can humans be genetically modified…but a much bigger question is should humans be genetically modified? There are two ways to think about genetic modification of humans (or any animal). One way is modification of somatic cells, and the other is the... Read More
Answer:
Posted on May 10, 2017
The simple answer is that 20+ years of composition assessments of GMO crops have demonstrated that crop composition is not appreciably affected by the GM process (1). In addition, data collected through that time have indicated that general factors such as the growth environment can contribute to notable variation in component levels (2). Plant agglutinins (or lectins) and amylase inhibitors are examples of anti-nutritional compounds that may be present in crops. The relevance of such a... Read More