STUDY: Assessing Potential Impact of Bt Eggplants on Non-Target Arthropods in the Philippines

By Michael Stebbins • December 13, 2016

The following is an excerpt of a study in the open access journal PLoS One about an eggplant that is genetically engineered to be resistant to one type of pest, and how that affects other organisms in the ecosystem.

Studies on potential adverse effects of genetically engineered crops are part of an environmental risk assessment that is required prior to the commercial release of these crops. Of particular concern are non-target organisms (NTOs) that provide important ecosystem services.

Here, we report on studies conducted in the Philippines over three cropping seasons with Bt eggplants expressing Cry1Ac for control of the eggplant fruit and shoot borer (EFSB), Leucinodes orbonalis, to examine potential effects on field abundance, community composition, structure and biodiversity of NTO’s, particularly non-target arthropod (NTA) communities.

We document that many arthropod taxa are associated with Bt eggplants and their non-Bt comparators and that the number of taxa and their densities varied within season and across trials. However, we found few significant differences in seasonal mean densities of arthropod taxa between Bt and non-Bt eggplants.

As expected, a lower abundance of lepidopteran pests was detected in Bt eggplants. Higher abundance of a few non-target herbivores was detected in non-Bt eggplants as were a few non-target beneficials that might control them. Principal Response Curve (PRC) analyses showed no statistically significant impact of Bt eggplants on overall arthropod communities through time in any season.

Furthermore, we found no significant adverse impacts of Bt eggplants on species abundance, diversity and community dynamics, particularly for beneficial NTAs. These results support our previous studies documenting that Bt eggplants can effectively and selectively control the main pest of eggplant in Asia, the EFSB. The present study adds that it can do so without adverse effects on NTAs.

Thus, Bt eggplants can be a foundational component for controlling EFSB in an Integrated Pest Management (IPM) program and dramatically reduce dependence on conventional insecticides.

Please visit PLoS One to read the entire study. 

Posted on April 18, 2018
GMO Answers provides the facts that answer questions related to biotechnology, GM crops and agriculture. We work to ensure that the content and answers provided by experts and companies are accurate and therefore do not present opinions about GMOs, simply facts. GMO Answers is a community focused on constructive discussion about GMOs in order to have open conversations about agriculture and GMOs. This website is funded by the Council for Biotechnology Information. The Council... Read More
Posted on April 20, 2018
When glyphosate is applied to plants (e.g., crops or weeds) a certain percentage is absorbed and transported throughout the plant. The amount absorbed is variable depending on the application rate and the type of plant. Very little of the absorbed glyphosate is degraded by the plant and cannot be removed. Its persistence in plants is also variable. Federal regulatory agencies have established allowable limits for glyphosate residues in many different crops to protect human and animal health.... Read More
Answer:
Posted on January 31, 2018
Thank you for your question. There are various aspects of your question. I assume your question refers to the use of Agrobacterium rhizogenes by scientists to intentionally transfer genes from the bacterium to plants. Infection and DNA transfer from this bacterium occurs in nature all the time to cause disease. Such transformed plants are not classified as GMOs since transfer occurred naturally. If this is done by scientists then it would be classified as a GMO. Rules and... Read More
Answer:
STUDY: GM Plant Two Year Saftey Testing
STUDY: Impacts of GMO corn: A meta analysis