QWhy not breed desired qualities into plants as we have for 10s of thousands of years?

Why not breed desired qualities into plants as we have for 10s of thousands of years?

AExpert Answer

Agriculture is commonly considered to have begun about 10,000 years ago, and crops have been continuously improved ever since. New crop varieties have been developed to improve such properties as nutritional quality, yield and harvestability, as well as to remove mammalian toxins. By identifying favorable traits in individual crop plants or their wild relatives, breeders can cross such individuals with commercial lines to create new, improved lines. Mutations―arising, for example, through chemical treatment or radiation―are also used to introduce new genetic variation that breeders can use when seeking new traits. Traditional breeding has a very safe history.

 

However, traditional breeding is typically slower, more expensive, less precise and often less effective compared with modern biotechnological techniques used to obtain similar desirable crop traits. Finding genes or mutations that achieve a desired phenotype by traditional means is often a very difficult process that can take many decades or longer. In traditional breeding, many genes are brought into crop plants that are unrelated to the desired phenotype. These unrelated genes (and even the genes responsible for the desirable phenotype) are typically unknown and untested for human safety. These genes may be very rare in the crop plant, may have been generated by intentional or unintentional mutation or may come from wild relatives of the crop having no history of safe consumption.


The gap left by this traditional process is precisely the reason that GM crops have been so successful. Indeed, many valuable traits, such as high levels of insect protection that have no effects on humans or other animals, are unlikely ever to be identified through conventional approaches. The full characterization of the transgenes, resulting gene products (usually proteins) and endogenous plant-DNA insertion site for a GM event makes modern biotechnological techniques more precise. The improved knowledge and ability to control the outcome of crop improvement through GM processes substantially increases the efficiency of crop improvement and reduces uncertainty with regards to the effectiveness and safety of the resulting crop lines. In conclusion, GM crops often offer a faster, cheaper, more precise and more effective means to obtain desirable and safe crop traits compared with traditional breeding methods.

Posted on March 1, 2018
GMOs are crops - and like any other version of the same crop, where you grow them and how you grow them is far more important than whether they are GMOs. No known system of agriculture can promise that it is sustainable forever; much agricultural research is being devoted to improving the sustainability of agriculture. In this regard, it appears likely that using GM technologies may improve sustainability of a particular crop cultured in a specific manner and place. Other... Read More
Answer:
Posted on March 5, 2018
Your question is being asked about many things that surround pregnant woman. Recently, studies have shown that many different things can effect pregnancy. Chemicals in water, air, soil, many medications, infections and chronic diseases, poor blood sugar control, tobacco exposure, and even mental and physical stress all carry risk. What happens to the mother, happens to the baby. At risk is not only the baby’s immediate growth and development, but also risk for chronic diseases in later... Read More
Answer:
Posted on March 2, 2018
In order to answer this question, it is important to first be clear about what a GMO/GMO farm is and secondly to discuss the complex issues relating to herbicide and pesticide use. What is a GMO/GMO farm? It is assumed that this question refers to genetically modified crops. GM crop technology has been widely used since the mid-1990s and in 2016 were planted on about 178 million hectares worldwide. The main GMO traits convey: Tolerance to specific herbicides (notably to glyphosate) in maize... Read More
Answer: