QReasons scientists created GMOs

Reasons scientists created GMOs

AExpert Answer

First of all, it is worth noting that the first genetically modified (GM) product approved by the FDA was insulin, produced by modified bacteria. GMOs were also developed to improve crop characteristics either by accelerating the introduction of a better version of existing genes into a crop or by enabling the introduction of completely new genes to provide new properties.

 

There are four main objectives:

 

First, genetically modified (GM) plants are used as a quick way to prove that a gene that is supposed to provide a new characteristic to a plant is actually doing the job.

 

Let’s say a scientist thinks a gene located on a chromosome in a plant is potentially providing resistance to a fungus. To be sure that the gene is really responsible for the resistance, the scientist will introduce this gene in a variety that is susceptible to the fungus. If the variety becomes resistant, then he/she knows that the gene is a resistance gene, and he/she can use it further to improve resistance of a crop to this fungus in the field. Thus, GMOs are useful to better generate knowledge, i.e. understand how plants work and survive in their environments.

 

Second, genetic modification offers the possibility to accelerate the introduction of a gene to provide a better characteristic (better resistance to a disease, better yield, better tolerance to drought, etc.) into a crop compared to classical breeding.

 

While it takes 15 years to introduce a new gene into a variety and combine it with other desired characteristics through classical breeding, it technically takes less than seven years to do the same using a GM approach (that is without counting the time for deregulations).

 

Third, genetic modification enables crops to acquire completely new functions that are otherwise brought by the use of natural or synthetic chemicals.

 

For example, many crops do not have genes that naturally protect them against insects eating their leaves or roots. In contrast, there are a lot of soil bacteria or fungi that carry this type of genes naturally. Thus, if a scientist discovers such a gene in a bacteria, and introduces it into a plant, thereby creating a GMO, the plant can now produce its own insecticide. By doing this, fewer chemicals are required to be sprayed in the fields to kill the insects.

 

Finally, GMOs can be produced to protect a crop against an herbicide that is used to control weeds.

 

By introducing a new gene or modifying the function of an existing gene into a crop, GM technologies provide herbicide tolerance to crops. Therefore, it becomes possible to control weeds in the fields without affecting the crop yield. 

Posted on February 2, 2018
Dr. Larry Gilbertson, PhD, Genomics Strategy Lead at Monsanto, explains how GMOs are “created” or made exactly, answering a lot of common questions about this process in this post. Watch as he prepares to create a GMO here.     Additionally, the below infographic details what a GMO is and the lifecycle it goes through to be developed.     Steve Savage, Consultant, Savage & Associates, explains what the future of GMOs may be like in this... Read More
Posted on February 2, 2018
A former response to a similar question answered by Dave Kovalic, Regulatory New Technology Lead at Monsanto, also provides information on scientific advancements and how they [Monsanto] affirm safety prior to targeted vector insertion.   “For context, it is important to recognize that random genome insertions have been naturally occurring in crops over the ~10,000-year history of agriculture.  In some crops, more than 90 percent of the genome consists of these... Read More
Posted on February 2, 2018
In terms of the science behind the technology to create GMOs, scientists have a much better understanding how a transgene is delivered and stably integrated into a chromosome (or genome). Many GMO products, such as Bt corn, were made using Agrobacterium cells to deliver useful trait genes into the plant cells. Scientists were able to dissect the different steps of this natural gene delivery system encoded by Agrobacterium. We now have a good understanding of the interactions between... Read More

Explore More Topics