QConsidering that in nature there is a panoply of Bt protein variants with differential activities, I was wondering whether this evolutionary potential has been tapped to overcome emerging insect Bt resistance in transgenic agricultural systems? I.e. do al

Considering that in nature there is a panoply of Bt protein variants with differential activities, I was wondering whether this evolutionary potential has been tapped to overcome emerging insect Bt resistance in transgenic agricultural systems? I.e. do all commercial Bt transgenes to date encode the same, identical Bt protein, or are there varieties that express variants and can be rotated to suppress selection for resistance to a particular Bt? And related, is (would) every Bt variant transgene be considered a new product that has to undergo its own legal evaluation procedure?

AExpert Answer

Today, there are several GM crops that produce different proteins derived from Bacillus thuringiensis (i.e. Bt proteins).  Some of the Bt proteins that we use provide protection from lepidopteran pests that feed on foliage, flowers, and grain (e.g. European corn borer, cotton bollworm).  Different Bt proteins provide protection from coleopteran pests that feed on roots (corn rootworm).  Within these two groups, industry uses a range of specific proteins to delay or overcome pest adaptation, as you suggest.   For example, the Cry1Fa and Cry2Ab Bt proteins both provide protection from European corn borer, and insects that may develop resistance to one can be controlled with the other.  Indeed, in most new Bt crops today, multiple Bt proteins are produced together specifically to combat emerging resistance.  In the near future, we expect to see more new insect-protection traits in GM crops that will further ease the threat of resistance.  Bt remains a rich source for those traits, and other mechanisms of protection, such as RNA-interference, are also being developed.

In regards to your second question, regulatory agencies around the world review each Bt protein individually for its human health and environmental safety.  Even closely related proteins, such as those with just a few differences in their amino-acid sequence, are evaluated separately.  What’s more, the safety of an existing Bt protein is re-evaluated when it is introduced into a new crop or even when re-introduced into the same crop at a different genetic position.  That said, we have built up an enormous knowledge base around the safety of Bt proteins in general, which should make the evaluation of existing and new Bt proteins simpler, faster, and more robust.

Posted on March 1, 2018
GMOs are crops - and like any other version of the same crop, where you grow them and how you grow them is far more important than whether they are GMOs. No known system of agriculture can promise that it is sustainable forever; much agricultural research is being devoted to improving the sustainability of agriculture. In this regard, it appears likely that using GM technologies may improve sustainability of a particular crop cultured in a specific manner and place. Other... Read More
Answer:
Posted on March 5, 2018
Your question is being asked about many things that surround pregnant woman. Recently, studies have shown that many different things can effect pregnancy. Chemicals in water, air, soil, many medications, infections and chronic diseases, poor blood sugar control, tobacco exposure, and even mental and physical stress all carry risk. What happens to the mother, happens to the baby. At risk is not only the baby’s immediate growth and development, but also risk for chronic diseases in later... Read More
Answer:
Posted on March 2, 2018
In order to answer this question, it is important to first be clear about what a GMO/GMO farm is and secondly to discuss the complex issues relating to herbicide and pesticide use. What is a GMO/GMO farm? It is assumed that this question refers to genetically modified crops. GM crop technology has been widely used since the mid-1990s and in 2016 were planted on about 178 million hectares worldwide. The main GMO traits convey: Tolerance to specific herbicides (notably to glyphosate) in maize... Read More
Answer: