GMO Answers: Get to Know GMOs
Introducing GMO Answers

SKEPTICAL ABOUT GMOs?
WE UNDERSTAND.

WE WANT TO DO A BETTER JOB ANSWERING YOUR QUESTIONS.
Answering Consumers’ Questions

Ask Us Anything About GMOs!
For Example: “How do I know that GMO patents are not creating a monopoly?”

Enter your question.

780 questions have already been answered!

OR

Browse All Questions & Answers

Who answers these questions?

Recently Answered Questions

Q: I have heard that Europe does not allow GMO seeds. If I buy pasta from Italy and Oatmeal from Ireland are they GMO free?
Posted On: Friday, 1/16/2015 3:10 pm
Answered By: Katarzyna Jasik, Communications Manager, Agricultural Biotechnology, EuropaBio on Friday, 1/30/2015 3:24 pm

Voting Closed

Notification Preferences
Social Media

GMO Answers

TWEETS FOLLOWERS
2,500 3,796

GMOAnswers @GMOAnswers
You have questions, we have answers. Ask at gmoanswers.com/ask, learn more at gmoanswers.com/explore.
672 Photos and videos

Tweets Tweets & replies Photos & videos

Pinned Tweet
GMOAnswers @GMOAnswers • Jan 22
2015 is Int’l #YearofSoils! Explore the relationship btwn #GMOs & soil health: gmoanswers.com/studies/how-do... #IYS2015

Don’t miss any updates from GMOAnswers

Full name
Email
Password

Sign up for Twitter

Trends
#ScandalThursday
Papa Pope
#SmackDownLIVE
Cisely Tyson
#DigiTourMemories
#AskJack
#CallMeSierra
Suje Knight
Yes Liv
Shonda

GMOAnswers @GMOAnswers • Jan 28
US bee populations are up nearly 13% since '08. Find out 'l & world stats at...
Social Media

GMO Answers

gmoanswers.com

You have questions, we have answers. Ask at http://www.gmoanswers.com/ask, learn more at http://www.gmoanswers.com/explore.

GMO Answers uploaded a video 10

GMO Answers Biotechnology

Timeline About Photos

Open to Your Questions About How Our Food Is Grown
Resources: Materials, Visuals & Videos

Visit GMOAnswers.com/educational-resources to download, print or share.
Resources: Mythbusters

Visit GMOAnswers.com/educational-resources or the GMO Answers’ Pinterest page to access mythbusters.
Get to Know GMOs

Topics we’ll cover:

1. Common Misconceptions
2. GMO Basics & Science
3. GMO Answers Resources
GMO MISTRUST
The top five misconceptions see across social media are:

#1. If it’s extra-large, seedless, looks weird, tastes bad and feels squishy – it must be a GMO.

#2. GMOs aren’t safe and they’re only tested by the companies making them.

#3. There is animal DNA in GMOs.

#4. GMOs have pesticides injected into them.

#5. GMO companies force farmers to grow their crops, or sue farmers if GMO seeds or pollen blow into their fields.
Myth-busting #1

Not a straw. Not a berry. Not a GMO.

Get the facts about the foods you eat at GMOAnswers.com
Myth-busting #2

Crops from GM seeds are studied extensively to make sure they are safe - an average of 13 years and $136M1

Hundreds of independent studies can be researched at Biofortified.org.

Myth-busting #3

How do you get THIS in HERE?

PHOTOSHOP, THAT'S HOW.

No GMO crops you eat contain animal DNA. Get facts, not fish tales, at GMOAnswers.com
Myth-busting #4

This is a GMO.

This isn't.

Get the dirt on GMOs at GMOAnswers.com
Myth-busting #5

Farmers choose what seeds to grow based on:
- What is best for their farms
- Local growing environments
- Consumer demand

Many farmers successfully grow, on the same farm, all three of these crops:
GET TO KNOW

GMO BASICS
What is a GMO?

GMOs are crops developed with genetic engineering, a more precise breeding technique, that enables someone to take individual traits found in nature and transfer them to another plant, or make changes to an existing trait in a plant.

There are eight GMO crops available in the U.S. today with two more approved and coming to market soon:

- Corn (field and sweet)
- Soybeans
- Cotton
- Canola
- Alfalfa
- Sugar Beets
- Papaya
- Squash
- Apple
- Potato
GET TO KNOW

GMO BASICS

How We Got Here

THE HISTORY OF GENETIC MODIFICATION IN CROPS

10,000 years ago
Humans begin crop domestication using selective breeding.

1700s
Farmers and scientists begin cross-breeding plants within a species.

1940s and 1950s
Breeders and researchers seek out additional means to introduce genetic variation into the gene pool of plants.

1980s
Researchers develop the more precise and controllable methods of genetic engineering to create plants with desirable traits.

1990s
The first GMOs are introduced to the marketplace.
GET TO KNOW
GMO BASICS

watermelon

corn

banana

aubergine / eggplant

carrot

cabbage, kale, broccoli, etc.
GET TO KNOW
GMO BASICS

Methods of Plant Breeding

Traditional

The traditional plant breeding process introduces a number of genes into the plant. These genes may include the gene responsible for the desired characteristic, as well as genes responsible for unwanted characteristics.

- **Donor Variety DNA Strand**: DNA strands contain a portion of an organism’s entire genome.
- **Recipient Variety DNA Strand**: Many genes are transferred with the desired gene.

Genetic Engineering

Genetic engineering enables the introduction into the plant of the specific gene or genes responsible for the characteristic(s) of interest. By narrowing the introduction to one or a few identified genes, scientists can introduce the desired characteristic without also introducing genes responsible for unwanted characteristics.

- **Donor Organism DNA Strand**: The desired gene is copied from the donor organism’s genome.
- **Recipient Variety DNA Strand**: Only the desired gene is transferred to a location in the recipient genome.
Why GMO? SEED IMPROVEMENT

<table>
<thead>
<tr>
<th>SEED IMPROVEMENT TECHNIQUE</th>
<th>SELECTIVE BREEDING</th>
<th>INTERSPECIES CROSSES</th>
<th>MUTAGENESIS</th>
<th>TRANSGENESIS (GMOS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>What is it?</td>
<td>Combining traits from similar and dissimilar plants by crossing into one genetic background with improved traits.</td>
<td>Breeding and tissue culture techniques that permit genetic exchange between plants not crossing naturally.</td>
<td>Using chemicals or radiation on seeds to change DNA and occasionally induce a favorable trait.</td>
<td>Adding a specific, well-characterized gene to a new seed to transfer a specific trait.</td>
</tr>
<tr>
<td>Examples</td>
<td>Almost everything we eat</td>
<td>Peppers, tomatoes, some apples, rice and wheat.</td>
<td>Many plants and fruits including peas, apples, rice, yams, maize, some bananas.</td>
<td>Alfalfa, canola, corn (field and sweet), cotton, papaya, soybeans, squash, sugar beets, apples & potatoes approved and coming to market soon.</td>
</tr>
<tr>
<td>Improved by breeding?</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>How many genes are affected?</td>
<td>10,000 to 300,000+</td>
<td>10,000 to 30,000</td>
<td>Random and unknown, likely thousands</td>
<td>1 to 3</td>
</tr>
<tr>
<td>Do we know which genes in the seed are affected?</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>YES</td>
</tr>
<tr>
<td>Research and development time?</td>
<td>5 to 30 years</td>
<td>5 to 30 years</td>
<td>5+ years</td>
<td>5 to 10 years</td>
</tr>
<tr>
<td>Tested by regulatory agencies to ensure safety for people, animals and the environment?</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>YES</td>
</tr>
<tr>
<td>Can the seeds be patented?</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>Approved for non-GMO and organic farming?</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>Are people asking for labeling?</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>YES</td>
</tr>
</tbody>
</table>

This chart compares and contrasts modern methods of seed improvement.

How do we create new and improved varieties of plants? It starts with the seed. Plant breeders and scientists work together to create new varieties to address evolving challenges to farming and changing consumer preferences. Humans have been central in seed improvement for over 10,000 years, and in the last 100 years our understanding of genetics has accelerated and enabled new seed improvement techniques. Compared to earlier methods, breeders can now make improvements to seeds by moving more precisely one or a few genes into a seed.
Why GMO?

<table>
<thead>
<tr>
<th>Feature</th>
<th>Benefit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insect resistance</td>
<td>Season-long protection against target pests, reduces the need for pesticide applications, and lowers input costs.</td>
</tr>
<tr>
<td>Drought resistance</td>
<td>Ability to grow in much drier areas, conserving water and other environmental resources.</td>
</tr>
<tr>
<td>Herbicide tolerance</td>
<td>Fight weeds by applying herbicides only when needed and enabling farmers to use no-till production methods that preserve topsoil, prevent erosion, and reduce carbon emissions.</td>
</tr>
<tr>
<td>Disease resistance</td>
<td>With GM, the Hawaiian papaya industry was able to recover from the devastating papaya ringspot virus that had crippled the industry.</td>
</tr>
<tr>
<td>Enhanced nutritional profile</td>
<td>High-oleic soybeans have been genetically modified to produce oil with more monounsaturated fat, less saturated fat and little-to-no trans fat. Other GM crops are still being developed for nutritional improvement, including Golden Rice, which includes β-Carotene that could deliver vitamin A to children in developing nations.</td>
</tr>
</tbody>
</table>
How is a GMO made?

https://www.youtube.com/watch?v=2G-yUuiqIZ0
GET TO KNOW
GMO BASICS

How is a GMO made?

1. Determine whether genetic engineering is the most effective way to solve a plant's problem
2. Identify the gene
3. Remove trait from a donor organism
 - Implant into the plant's DNA
4. Plant the new seed
 - And test it

1985

Farmers

Researchers
Who grows GMOs?

As of 2014, GMOs are grown, imported, and/or used in field trials in 70 countries.
How do we ensure that GMOs are safe for use and consumption?

- GMO crops are studied extensively to make sure they are safe for people, animals and the environment.
- GM seeds take an average of $136 million and 13 years to bring to market because of research, testing and regulatory approvals conducted by government agencies in the United States and around the world.¹

GMO Safety: Safe to Eat

- GMOs available today are as safe as their non-GMO counterparts.
- They do not cause new allergies, cancer, infertility, ADHD, autism or any other diseases or conditions.
- The safety of GMOs has been affirmed by:
GMO Safety: Safe for the environment

Biotech crops have reduced agriculture’s environmental footprint:

- Increased yield on current land prevents further deforestation and protects ecosystems
- Fewer pesticide applications
- No/reduced tillage with GM HT technology means less tractor fuel consumption and emissions

“In 2013, the permanent CO2 savings from reduced fuel use associated with GM crops was 62 billion pounds. This is equivalent to removing 12.4 million cars from the road for a year.”

- Graham Brookes, Agricultural Economist, PG Economics Ltd
GMO Safety: Safe to Grow

When testing, researchers look for any difference between the GM and non-GM plants to make sure the GM variety grows the same as the non-GM variety.

They are also tested to make sure they do not unintentionally harm non-target, beneficial insects, like honey bees and ladybugs.
What do the GMOs of the future look like?
LOOKING FOR MORE INFORMATION?

GMO Answers is a resource for information about GMOs and biotechnology in agriculture.

Explore: Visit the Explore the Basics section of our website, which offers information about GMOs and agriculture in a simple, visual and user-friendly format.

Ask: Visit our Ask section to submit a question and have it answered by an independent or company expert.

Engage: Join the conversation by posting a comment and participating in a constructive dialogue with other members of the community.

FOLLOW US:

Twitter | Facebook | Pinterest | YouTube | Google+