Line 4Line 4 Copyic/close/grey600play_circle_outline - material

ARTICLE: To save iconic American chestnut, researchers plan introduction of genetically engineered tree into the wild

The following is an excerpt of an article by reporter Gabriel Popkin on the Science Magazine website on GMO efforts to save the American Chestnut.

Two deer-fenced plots here contain some of the world's most highly regulated trees. Each summer researchers double-bag every flower the trees produce. One bag, made of breathable plastic, keeps them from spreading pollen. The second, an aluminum mesh screen added a few weeks later, prevents squirrels from stealing the spiky green fruits that emerge from pollinated flowers. The researchers report their every move to regulators with the U.S. Department of Agriculture (USDA). "We tell them when we plant and where we plant and how many we plant," says Andrew Newhouse, a biologist at the nearby State University of New York College of Environmental Science and Forestry (SUNY ESF).

These American chestnut trees (Castanea dentata) are under such tight security because they are genetically modified (GM) organisms, engineered to resist a deadly blight that has all but erased the once widespread species from North American forests. Now, Newhouse and his colleagues hope to use the GM chestnuts to restore the tree to its former home. In the coming weeks, they plan to formally ask U.S. regulators for approval to breed their trees with nonengineered relatives and plant them in forests.

If the regulators approve the request, it would be "precedent setting"—the first use of a GM tree to try to restore a native species in North America, says Doria Gordon, lead senior scientist at the Environmental Defense Fund (EDF) in Washington, D.C. But deciding whether to unleash a GM tree into the wild could take years.

American chestnuts, towering 30 meters or more, once dominated forests throughout the Appalachian Mountains. But in the early 1900s, a fungal infection appeared on trees at the Bronx Zoo in New York City, and then spread rapidly. The so-called chestnut blight—an accidental import from Asia—releases a toxin that girdles trees and kills everything above the infection site, though still-living roots sometimes send up new shoots. By midcentury, large American chestnuts had all but disappeared.

In 1990, SUNY ESF tree geneticists William Powell and Charles Maynard (now retired) decided to try to create resistant chestnuts with the then-new technology of genetic engineering. Eventually, they inserted into the tree's genome a wheat gene that codes for an enzyme called oxalate oxidase, or OxO. It breaks down the oxalic acid the pathogen releases, which is what kills the trees. "We're basically taking the weapon away from the fungus," Powell says.

Researchers seal off the flowers of a chestnut carrying a wheat gene that neutralizes a fungal toxin.

It didn't work at first. Then, the scientists changed the wheat gene's promoter sequence to cause OxO to be expressed at high levels. In 2014, they reported that a GM tree named Darling 58 both resisted blight infection and transmitted resistance to its offspring. Subsequent tests showed that it produces nuts indistinguishable from those of native trees, Newhouse says. And its pollen, flowers, and decaying leaves don't harm bees, beneficial soil fungi, or tadpoles that hatch in pools on the forest floor.

But the request to release it is likely to face a lengthy regulatory road. The United States, China, and Brazil have approved some transgenic trees for use in fruit orchards, biofuel plantations, and afforestation projects. But like GM crops and animals, GM trees are controversial, and ethical and ecological concerns are heightened because the chestnut trees would grow wild. Regulators from three federal agencies are likely to take a close look at those concerns. USDA officials, for instance, will seek to determine whether the tree could become a weed or otherwise threaten existing plants. The Food and Drug Administration will study whether the tree's fruit is safe to eat, and the Environmental Protection Agency will consider whether the trees' blight-blocking enzyme should be regulated as a fungicide.

Regulators also "need a really clear process for transparently incorporating … cultural and spiritual values into the decision-making," says Gordon, who serves on a committee convened by the National Academies of Sciences, Engineering, and Medicine to examine issues surrounding GM trees. The American chestnut was a culturally important tree and important food source for many Native Americans, and some are wary of genetically altering a species with which they have a long relationship, says Neil Patterson, a member of the Tuscarora Nation and assistant director of the Center for Native Peoples and the Environment at SUNY ESF.

To read the entire article, please visit the Science Magazine website.