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Despite the fact that a thorough, lengthy and costly evaluation of genetically engineered (GE) crop

plants (including compositional analysis and toxicological tests) is imposed before marketing some

European citizens remain sceptical of the safety of GE food and feed. In this context, are additional tests

necessary? If so, what can we learn from them? To address these questions, we examined data from 60

recent high-throughput ‘-omics’ comparisons between GE and non-GE crop lines and 17 recent long-

term animal feeding studies (longer than the classical 90-day subchronic toxicological tests), as well as 16

multigenerational studies on animals. The ‘-omics’ comparisons revealed that the genetic modification

has less impact on plant gene expression and composition than that of conventional plant breeding.

Moreover, environmental factors (such as field location, sampling time, or agricultural practices) have a

greater impact than transgenesis. None of these ‘-omics’ profiling studies has raised new safety concerns

about GE varieties; neither did the long-term and multigenerational studies on animals. Therefore, there

is no need to perform such long-term studies in a case-by-case approach, unless reasonable doubt still

exists after conducting a 90-day feeding test. In addition, plant compositional analysis and ‘-omics’

profiling do not indicate that toxicological tests should be mandatory. We discuss what complementary

fundamental studies should be performed and how to choose the most efficient experimental design to

assess risks associated with new GE traits. The possible need to update the current regulatory framework

is discussed.
Introduction
Safety assessment is structured, step-wise, and based on a com-

parative approach. The substantial equivalence concept according

to the principles outlined in the Organization for Economic

Cooperation and Development (OECD) consensus documents

[1] encompasses a comparison of biochemical composition with

a non-GE line considered to be safe. The GE line is compared to its

near isogenic counterpart, according to specific determinants such

as molecular characteristics, and agronomic and phenotypic traits

[2]. Moreover, public consultation procedures have been estab-

lished.
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Despite the fact that an extensive and robust compositional

assessment for evaluating the substantial equivalence of GE crop

plants is currently imposed before market introduction (including

current toxicological tests), some citizens remain sceptical of the

safety of GE food and feed in the EU [3]. The first question is: may

the improvement of a plant variety through transgenesis result in

unintended effects which may be triggered by the insertion of a

transgene? If so, could it impact on consumer and animal health?

The second question regards the safety of animals: can long-term

studies as well as multigenerational feeding studies detect poten-

tial unintended effects in animals? These questions have

prompted new studies, carried out by public research laboratories

using alternative evaluation techniques (i.e. not part of the regular

evaluation process), namely high-throughput ‘-omics’ profiling of
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GE varieties and long-term animal feeding studies as well as multi-

generational feeding studies.

The aim of the present study was to investigate the data of these

articles in the context of detection of possible unintended effects

in GE plants.

Materials and methods
Our database ‘BergeRicrochGMlibrary’ of studies using transgenic

plants is built from selected references from journal sites (such as

Ingenta, PubMed, WoK). Search terms include ‘transgen*’ OR

‘transgenic’ OR ‘GM’ OR ‘GE’ OR ‘engineered’ OR ‘modified’ OR

‘genetic* engineer*’ OR ‘genetic* modifi*’ OR overexpress* OR

‘insect* resist*’ OR ‘herbicide tolerant’ OR ‘glyphosate tolerant’

AND ‘plant’ OR ‘species’ OR ‘organism’ OR ‘crop’. This database is

maintained by the analyses of tables of contents of journals from

collections such as BioOne, Elsevier, ScienceDirect, Springer, etc.

(507 journals); by the monitoring of 352 journals not covered by

these collections; and by the monitoring of 530 other journals [4].

To perform a systematic review using an evidence-based decision

approach, we followed a decision tree (Flow of Included Studies). We

selected relevant search terms to sort a set of publications from

potentially relevant studies identified and screened for retrieval to

studies included in a literature review. For this review, the references

were sorted using search terms related to ‘omics’; ‘transcriptomics’;

‘proteomics’; ‘metabolomics’; ‘long-term’; ‘mutigenerational’;

‘feeding studies’, ‘Food safety’, and ‘Feed safety’, ‘food and feed’.

Then selected papers on feeding studies are sorted using EndNote6

with a search of ‘feeding studies’, ‘feed’, ‘fed’ terms in titles and in

abstracts separately. Long-term studies, that is longer than 90 days,

extending over most of the lifetime of the test species, are used to

assess the potential chronic toxicity and/or carcinogenicity for

single defined substances [2].

Results
High-throughput profiling studies
Recent developments in biotechnology include the emerging

technologies of ‘-omics’ – transcriptomics, proteomics and meta-

bolomics. Transcriptomics measures the steady-state mRNA abun-

dance from a given tissue source. Proteomics is a technology for

both qualitative and quantitative analyses of proteins, and inves-

tigations into protein posttranslational modifications. Metabolo-

mics refers to the complete set of metabolites synthesized through

a series of multiple enzymatic steps from various biochemical

pathways.

High-throughput ‘-omics’ profiling techniques have been sug-

gested as a nontargeted approach to detect unintended effects in

GE plants. The application of proteomics in food science [5] can

address the safety issue of food of various origins, including

transgenic food, in parallel to the transcriptomic and metabolomic

approaches. We examined recently published profiling studies

concerning major crop plants [6]. Here we update the evaluation

of GE crops, so in total 60 profiling studies were published. The

over-arching objective of our investigation is to explore the pos-

sibility, or not, of developing a new generation of ‘-omics’ profiling

for the assessment of commercial GE crop plants with regard to

their nutritional equivalence and food safety. Studies using Arabi-

dopsis thaliana as the laboratory model plant were not examined in

this paper (for further details see [6]).
350 www.elsevier.com/locate/nbt
GE plants with new agronomic traits, but without deliberate
modifications to metabolic pathways
These 36 studies concerned crops such as barley (1 study), cabbage

(1), maize (11 and [7–9]), pea (2), potato (1), rice (4 and [10–16]),

soybean (2 and [17]) and wheat (3). Here we do not discuss the

studies on GE lines of tomato and tobacco producing pharmaceu-

ticals nor the use of ‘-omics’ to identify food allergens (see [6]).

Our examination reveals that ‘-omics’ profiling of GE varieties

were similar to non-GE counterparts, although some minor differ-

ences exist between GE lines and their comparator conventional

control lines. For example, the amounts of some specific metabo-

lites were higher or lower in the GE glyphosate-tolerant soybean

line [18]; these differences could be explained by modification in

the regulation of the shikimate pathway. Gene expression in leaves

differs more between conventional varieties than between two GE

glyphosate-tolerant varieties [19]. A study on wheat found that the

different genetic background of the control lines resulted in a

quantitatively different flavonoid content compared to the GE

fungal-resistant line whereas different GE lines showed only minor

differences relative to their non-GE counterparts [20]. Natural

plant-to-plant variability also exists: in a comparison of GE

insect-resistant MON810 and control maize lines, some 2DE-sepa-

rated protein spots showed a high variability between individual

samples from the same line [7]. Some differences observed between

GE lines and their counterparts can be limited to a given devel-

opmental stage as shown in a Bt (cry1Ab/1Ac gene) rice study [10].

In rice, herbicide-resistant Bar68-1 carrying bar gene and insect-

resistant 2036-1a carrying cry1Ac/sck gene events did not substan-

tially alter proteome profiles as compared with conventional

genetic breeding and natural genetic variation [11]. Another pro-

teomics analysis showed that these GE events (Bar68-1 carrying

bar, cry1Ac and sck genes) in rice do not substantially alter pro-

teome profiles as compared with conventional genetic breeding

and natural genetic variation [12]. In a metabolic study of the same

rice event (cry 1Ac and sck genes), a slight difference in concentra-

tions of phytosphingosine, palmitic acid, 5-hydroxy-2-octadenoic

acid and three other unidentified metabolites was due to gene

modification while environmental factors played a greater role

than gene modification for most metabolites [13]. Proteomics

analysis indicated no significant differences in Bt-rice seeds con-

taining the cry1ab and cry1/ac genes compared to its isogenic

controls [14]. Significant changes in some metabolites were found

both in bacterial blight-resistant rice varieties obtained by con-

ventional breeding or transgenesis compared to the parental non-

GE variety. However, the line obtained by conventional breeding

possesses a distinctive metabolite profile and shows more differ-

ences versus the parental than the transgenic line [15]. In compar-

ison with a non-GE comparator, Bt rice showed differences in

antioxidant system and signalling regulation as a response to

insecticide stress [16].

Data analyses revealed variations related to factors such as

variety and environment. Several environmental factors (such

as field location, planting and sampling time, or crop manage-

ment practices) were shown to exert a greater influence than

transgenesis.

These profiling studies consistently indicate that transgenesis

has fewer unintended impacts than conventional breeding. Inter-

estingly, one study showed that transcriptome alteration was
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greater in mutagenized plants than in transgenic plants [21].

Unlike transgenic lines, mutagenized lines are not subjected to

food safety assessment in the EU.

None of these published assessments using new ‘-omics’

profiling points to new safety concerns about marketed GE crop

varieties.

GE plants with altered metabolic traits
These 24 studies concerned GE crops such as barley (1 study),

grapevine (2), maize (1), potato (5), rice (5), tomato (6 and [22]),

and wheat (3).

GE lines with altered metabolic traits do not necessarily exhibit

pleiotropic changes. However, some changes in compounds do

occur when certain pathways are modified. As expected, several

metabolism pathways for example in tomato can be altered, either

in conventional mutants or in GE lines, when regulatory genes are

affected [23,24].

Some differences in wheat expressing glutenin subunit genes in

the endosperm are found in metabolites between GE and parental

lines, but generally, they fall in the range of differences caused by

environmental factors (growth in fields in different years and on

different sites) [25]. Thus, larger differences were observed between

two wheat parental lines than between the GE and control lines.

Some changes in seed compounds of two high-Trp rice lines are

found due to altered pathways which were predictable as a result of

altered biosynthetic pathway but no major changes were observed

for other phenolic compounds [26]. In potato, depending on

genotype, somaclonal variation may be responsible for an

unknown proportion of differences [27].

Long-term and multigenerational feeding studies
The inclusion of GE plants in animal feed and for direct human

consumption has increased consistently since the first commercial

production in 1996. However, the increased use of GE plants for

human consumption and feed for livestock has led to public

concern related to a perceived risk for health, toxicity and aller-

genicity of the transgenic proteins.

When ‘molecular, compositional, phenotypic, agronomic and

other analyses have demonstrated equivalence of the GM food/

feed, animal feeding trials do not add to the safety assessment’

(EFSA [28]). However, valuable information can be added to the

safety assessment of GE food and feed safety by animal feeding

studies, especially if doubt remains on the equivalence of GE food

[2]. In these comparative feeding studies, 33% of the feed consists

of GE material or control material (see recommendations of the

French Agency for Food, Environmental and Occupational Health

and Safety [29]); the remaining part is composed of a balanced diet.

The results of 90-day rodent feeding trials performed with GE

maize, rice and soybean did not lead to any unintended effects

in animals (see [30]). However, we decided to address the following

question: can long-term studies as well as multigenerational feed-

ing studies detect potential unintended effects in animals (that are

not detected in 90-day subchronic tests)? We examined recently

33 published studies regarding the long-term effects of GE plants,

that is studies significantly longer than the 90-day tests (17 stu-

dies), as well as multigenerational studies (16 studies). These

studies have been compared to the already performed 90-day

studies (for further details see [30]).
We explored the issue whether GE plants may reveal any long-

term effects of GE exposure not identified during the short-term

premarket risk assessment.

Long-term studies
A detailed discussion on long-term studies (longer than 90–96

days) is available in [30]. Here, we update this investigation with a

16-week study on pigs fed with Bt-maize [31] (see also the short-

term feeding trial [32]), a 22-week study on Japanese quail fed with

Bt-maize [33], a 32-week study on Atlantic salmon [34] fed with Bt-

maize and glyphosate soybean, and a 35-week study on beef cattle

fed with Bt-maize [35].

All the 17 studies were financially supported by public funds.

The duration of GE-based diet feeding times vary between 110 days

(16 weeks on pigs fed with Bt-MON810 maize [31]) and 728 days

(104 weeks on rats fed with glyphosate-tolerant (CP4-EPSPS) soy-

beans [30]). Rat (Fischer 344 and Wistar strains) was the predomi-

nant model (used in four studies, two in both strains). Various

animal models were additionally used such as Swiss mice (five

studies), salmons (three), beef cattle (one), dairy cows (one),

macaques (one), pigs (one), and quail (one). Several parameters

have been examined (detection of transgenic DNA, body and

organ weight, blood and urine analyses, enzyme activities, bio-

chemistry, histopathology and immunology). Most of these stu-

dies utilized major commercial products, namely glyphosate-

tolerant (CP4-EPSPS) soybean (ten rodent studies along with a

feeding study on salmons [34]) and insect-resistant (Cry1Ab)

maize (five feeding studies on cows for 100 weeks [30], beef cattle

[35], pigs [31], quail [33] and salmons [34]). In addition, one study

concerned rice containing human T-cell epitope from Japanese

cedar pollen allergens fed to macaques for 26 weeks [30].

Recently, a study claimed that the glyphosate-tolerant GE maize

NK603 and a related herbicide formulation caused organ damage,

tumors, and early death among Sprague-Dawley rats on rats fed

with maize NK603 during two years [36]. However, numerous

agencies of food safety, namely the German agency ‘Bundesinsti-

tut für Risikobewertung’ [37], the European authority ‘EFSA’

[38,39], the Australian and New Zealand agency ‘Food Standards

Australia and New Zealand’ [40], the Danish agency ‘Danmarks

Tekniske Universitet’ [41], the Netherlands agency [42], the French

agency ‘ANSES’ [43], the French High Council of Biotechnologies

‘HCB’ [44], the Belgian Biosafety Advisory Council [45], the Health

Canada and Canadian Food Inspection Agency (CFIA) [46] and the

Brazilian National Biosafety Technical Commission [47] refuted

these claims.

A diverse range of animal models and various feeding durations

and feed composition were used in these studies. No new safety

concerns were raised and no supplementary information, in addi-

tion to previously performed 90-day feeding studies, were appar-

ent. The new study carried out on pigs [32] also showed no long-

term effects after 110 days (16 weeks) of feeding with maize

containing Cry1Ab protein (MON810 event). Differences observed

in serum biochemistry were all within the normal reference inter-

vals for pigs; according to the authors these differences were the

result of a lower enzyme-resistant starch in the GE compared to

non-GE maize, which had been previously reported [31]. Chan-

ging from the non-GE maize to the GE maize diet may have

resulted in a lack of satiety in pigs fed the non-GE/GE treatment.
www.elsevier.com/locate/nbt 351
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The enzyme resistant starch content of food is known to influence

satiety. The authors concluded: ‘Long-term feeding of GM maize to

pigs did not adversely affect growth or the selected health indicators

investigated.’ [32]. Previous work by the same group also found that

short-term (31 days) feeding of GE maize had no adverse effects on

growth [31]. No significant influence on feed intake of Bt-maize,

fattening and slaughtering results were observed in a 35-week beef

cattle study [35]. Feeding of Bt-maize did not impair the laying

intensity and the specific and nonspecific immune response in a

22-week quail study [33] and differences in zinc serum concentra-

tions range within the normal variation of in quail. In a 32-week

salmon study, no differences were observed between Bt-MON810

and non-GE maize feed, while GE and non-GE diets resulted in

higher LAP activity compared to a standard diet and activity of

maltase and AcP was higher in this standard diet [34].

It is important that comparison of the GE diet is done with the

non-GE isogenic counterpart [2]. The studies on maize and rice

comply with these required standards to compare GE and non-GE

lines. Unfortunately, six studies using a soybean-based diet do not

declare whether an isogenic line was used (in five studies the event

is not mentioned; see discussion in [30]).

Multigenerational studies
The main goal of these studies was to assess whether feeding a

generation (n) with a GE-based diet had adverse effects on the next

generation (n + 1). These 16 multigenerational studies were per-

formed on animals fed with GE-based diets throughout their life

or only on short-term (less than 90 days). In both cases these

animals were bred to produce future generations (studies on two

to ten generations) (for further details see [30,48–53]). The longest

multigenerational study consisted of feeding quail with a diet

containing up to 50% Bt176 maize over ten generations. The

duration of GE-based diet feeding varies between 1 and 188 weeks.

Rodents were predominantly used (mice in five studies (see

[30,49]) and Sprague-Dawley and Wistar rats in four studies

[30,52]). The farm animals used were pigs (two studies), bulls

(one), dairy cows (one), goats (one), sheep (one), hens (one), and

quail (one). Parameters measured included transgene detection,

body and organ weight, feed intake, enzyme concentrations or

activities, lactation, histopathology and hematology, reproduc-

tive factors and performance.

The GE-material in the diets utilized Bt-insect-resistant maize

(in eight studies including [49–51]), glyphosate-tolerant (T25)

maize [52], glyphosate-tolerant (cp4 epsps gene) soybean (three

studies), glufosinate-ammonium-tolerant triticale (two studies),

potato containing the phosphinothricin acetyltransferase (bar

gene) and lysine-rich rice [53].

However, in two studies using a maize diet, an isogenic line was

not used. The event was not mentioned in one Bt-maize study. In

two studies using a maize diet and a soybean diet an insufficient

number of animals was used (see discussion in [30]).

All these 16 studies were financially supported by public funds.

No mutigenerational effects were reported in a majority of studies.

However, effects were reported in three studies, but it should be

noted that no isogenic lines were used. These differences concerned

the level of LDH enzyme of target animals such as goats fed with

glyphosate-tolerant soybean [54] and changes in immune responses

of mice fed with glufosinate-ammonium-tolerant triticale in the
352 www.elsevier.com/locate/nbt
fifth generation of mice [55]. However, these differences seem to be

minor, especially because the authors do not conclude that they

constitute a health hazard. The authors suggest that these changes

may fall within the normal range of variation but should be further

investigated. It should especially be determined whether they are

reproducible. An inadequate number of animals were used in a study

on soybean [52]. When comparing Bt176-maize to the non-GE

maize fed to sheep, some minor metabolic changes were reported

with no demonstration of any health hazards [30]. The authors

suggest that these changes should be further investigated to check if

they are reproducible or not.

Bt-MON810 maize did not significantly influence production

and reproductive performances of animals compared with a diet

containing 50% isogenic maize when using pig offspring at birth

[50] and pigs for 115 days postweaning [51]. No impact of glufo-

sinate-ammonium-tolerant T25 maize on reproductive function of

Wistar rats and on progeny development were found in two

consecutive generations [52]. A lysin-rich rice was found as safe

as its near-isogenic non-GE rice in three consecutive generations of

Sprague-Dawley rats [53].

Discussion
What lessons can be drawn from the use of new ‘omics’
techniques on the food safety?
The 60 ‘-omics’ profiling publications comparing GE and non-GE

crop varieties, with or without intentional metabolic changes,

converge to show that transgene insertions produce few unin-

tended effects [4].

Currently, the risk assessment of GE crops includes the analysis

of 50–150 analytes identified by OECD consensus documents [1].

This number depends on the crop species. In the literature, meta-

bolomics is the prevalent ‘-omic’ approach to assess GE crops,

followed by transcriptomics. To a lesser extent proteomics is also

used to detect unintended effects in plants due to the genetic

modification itself. Metabolic profiling of crops is becoming

increasingly popular in assessing plant phenotypes and genetic

diversity [56]. The use of metabolomics for regulatory GE crop

assessment would be a change of paradigm (measuring more

analytes, a few hundred analytes, but with less precision). Proteo-

mics (through a 2-DE protein analysis) can be used for qualitative

and quantitative estimation of the allergen levels, including new

ones, with recent improvements in sensitivity, mass accuracy and

fragmentation [57].

Few public laboratories have used different ‘-omics’ approaches

in a comparative approach. Therefore, an exhaustive comparative

assessment of these techniques is not yet possible. These ‘-omics’

profiling studies are highly heterogeneous (depending on plant

tissues, growth parameters, range of comparators and methods).

There is a need to conduct normalized, validated approaches

before these techniques can be used for the routine safety of

new GE crops.

Large effects due to the environment were observed in gene

expression, protein, and metabolite levels in some studies, illus-

trating the need for exposure to the same environmental con-

ditions, pairwise differences between GE lines and their

progenitor lines. Larger differences were often observed between

two conventional lines, between years of sampling, and between

different field sites than between the GE and control lines. Many
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methodological shortcomings are identified with ‘-omics’

approaches, a paucity of reference materials, and a lack of focused

strategy for their use that currently make them not conducive for the

reglementary safety assessment of GE crops [58]. For determining

unintended effects in GE crop varieties, a validation work is needed

before these ‘-omics’ technologies could gain full recognition by

regulatory authorities and agencies.

What lessons can be drawn from the use of long-term and
mutigenerational studies?
Very few published long-term feeding studies use the same animal

model or the same crop model. Moreover, the parameters studied

varied. Hence no studies have been carried out twice in the same

conditions by different research teams. Therefore, improvements

in the protocols should be made, particularly focusing on repro-

ducibility of data.

No new safety concerns were raised in these mutigenerational

studies. However, some studies suffer from weaknesses such as lack

of an appropriate control group and the number of animals or the

correct number of animals, lack of precision regarding duration of

the study and the event studied. Statistical criticisms can also be

raised: weak definition of factor levels and absence of a complete

combination of factors inside experimental designs. No evaluation

of the statistical power as well as few multivariate approaches were

reported in these studies. Future studies should be undertaken

according to EFSA recommendations which have underlined the

necessity of an improved methodology when statistics are

involved [59] and the distinction between statistical significance

and biological relevance [60].

Conclusions
We addressed the question whether alternative techniques, such

as ‘-omics’ assessments of GE plants or long-term animal feeding

studies, can provide useful clues for unintended effects of GE food/

feed. The application of the precautionary principle and stricter
regulations have failed to convince certain consumers that EU

regulations are tough enough regarding food and feed safety.

Long-term and multigenerational studies should only be con-

ducted in a case-by-case approach for GE food/feed safety and

nutritional regulatory assessment if some reasonable doubt

remains after a 90-day rodent feeding trial. Thus, considering

distrust in data provided by seed companies and sceptical opinion

on GE crops, it is important that new approaches such as ‘-omics’

have been used by public research laboratories. However, none of

these ‘-omics’ assessments have raised new safety concerns about

marketed GE crop varieties. This is not surprising considering the

experience acquired after 15 years of growing and consuming GE

food and feed. Our review does not provide evidence that more

food safety testing is necessary for GE crop varieties. These long-

term and multigenerational data and ‘-omics’ data taken together

suggest that, apart from specific cases, their risk assessment could

be lowered.

Despite these scientific data, allegations against food safety of

GE crop varieties are probably to remain in the public debate in the

EU. However, it can be noticed that the French and German

governments, which launched a procedure called ‘safeguard

clause’ to ban cultivation of GE maize, did not use food safety

arguments to justify it (in the EU a procedure called ‘safeguard

clause’ allows a Member State providing valid reasons to consider

that a GE crop plant constitutes a risk to human/animal health or

to the environment, to provisionally restrict or prohibit the use

and/or sale of that product on its territory [61]). Instead these

governments tried to demonstrate environmental risks for the

cultivation of GE maize, arguments which also failed to provide

scientifically valid data [62].
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